0=(4x^2+20x+100)-100+9

Simple and best practice solution for 0=(4x^2+20x+100)-100+9 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 0=(4x^2+20x+100)-100+9 equation:



0=(4x^2+20x+100)-100+9
We move all terms to the left:
0-((4x^2+20x+100)-100+9)=0
We add all the numbers together, and all the variables
-((4x^2+20x+100)-100+9)=0
We calculate terms in parentheses: -((4x^2+20x+100)-100+9), so:
(4x^2+20x+100)-100+9
We add all the numbers together, and all the variables
(4x^2+20x+100)-91
We get rid of parentheses
4x^2+20x+100-91
We add all the numbers together, and all the variables
4x^2+20x+9
Back to the equation:
-(4x^2+20x+9)
We get rid of parentheses
-4x^2-20x-9=0
a = -4; b = -20; c = -9;
Δ = b2-4ac
Δ = -202-4·(-4)·(-9)
Δ = 256
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{256}=16$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-20)-16}{2*-4}=\frac{4}{-8} =-1/2 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-20)+16}{2*-4}=\frac{36}{-8} =-4+1/2 $

See similar equations:

| 3x2x=120 | | 4x=-3x-2 | | 3(x+4)-(-x-3)=2x-1 | | 4(7x+3)-x=0 | | 3x+3=19-x | | (x+4)/5=300 | | 6x²+3x+2=0 | | 4x-2=15+x | | 2.4x+2–5.4x+1–3.22x+1-4x=20 | | 8x-3x-2=43 | | 80/100=x/20 | | 10,5=x+2,5 | | 3x+4+2+2x-1=18 | | 0.35+0.35e=e | | 3(x-10+2(x+4)=20 | | X/100=2x-32/180 | | 18x=9x+17 | | 21x=14x+21 | | 7*2^(5x+7)=224 | | 19x=12+21x | | 7*2^5x+7=224 | | (1.78x)^2+x^2=3025 | | x+2+|2x-1|=14 | | x+2+|2x-1=14 | | 3(5p-3)-4()=3p-1 | | 2x/1x=0 | | 12/30=8/x | | 12/39=8/x | | 3.52*x=4.00 | | 2/5+7x=6 | | 22.4=16x+30(1-x) | | 2x+25+3x-5=360 |

Equations solver categories